
Attachment A:

Cassini CDS Mark and Rollback Preliminary Fault

Analysis

May 28, 1997

1 Model and Case 1

This white paper summarizes the key �ndings from a formal analysis of

the Cassini CDS Mark and Rollback design, as described in Cassini Design

Note 10. The paper describes three anomalies in the design, assesses the

risk involved, and makes recommendations for further work to determine

whether these errors a�ect the as-built system. Details of the formal analysis

technique are omitted here for brevity; these will be described in a separate

paper.

The work described in this paper is a continuation of the analysis of the

Mark and Rollback scheme conducted under task 2 of the MOA between

the IVV Facility and JPL. The continuation work was funded as a Code Q

RTOP research project, as an exploration the use of the formal modelling

technique.

We constructed a software validation model of the CDS mark and roll-

back process, based on the description in Design Note 10 [1]. The SPIN/PROMELA

modeling system (See [2]) was used to construct the computer model and to

run validation tests on the model. Six di�erent fault categories were iden-

ti�ed to test the model. The results reported here cover the �rst of these

categories only, but we do discuss implications for the other �ve fault cat-

egories. Fault category 1 refers to the behavior of the CDS prime string in

the face of a peripheral interfering fault.

Six separate requirements on the rollback scheme were validated. These

were:

1

Attachment A - DO NOT REDISTRIBUTE 2

1. rollback required in prime and online to 6BEGIN PROG when up to

three seconds and more than three seconds had gone by (2 require-

ments);

2. rollback required in prime and online to next previous mark point if

up to 3 seconds have gone by (2 requirements) and execution point

not at 6BEGIN PROG;

3. rollback to current mark point in prime and online strings if more than

3 seconds have gone by and not at 6BEGIN PROG.

To accomplish this, a simple but general critical sequence was constructed

and executed using the model. Each of the 6 requirements involved exhaus-

tive examination of approximately 100,000 states in the model, and took

about 30 seconds. The response and recovery in each case was to the injec-

tion of a single peripheral interfering fault in all possible ways based on the

model. Three of the 6 runs for the 6 requirements failed in the veri�cation.

2 Findings

Three anomalies were identi�ed and are described below. The �rst two are

potential errors in the design note that we suspect will not occur in the

CDS implementation. The third, we believe, is a discrepancy in the design

requirements that could allow for erroneous behavior of the implemented

system.

All of the behaviors described used spatial synchronization only. That

is, both the prime and the online strings were synchronized initially by forc-

ing them to begin execution using a program counter value of 1 (= 6BE-

GIN PROG) and thereafter used a rendezvous handshake during interrupt

5 to maintain synchronization between the prime and online system.

2.1 Anomaly One

Depending on how error detection and repair is handled, it may be possible

for the prime system to detect and to repair an intermitent error within one

second, and then consequently not to broadcast this state to the online sys-

tem. This would mean that the online sytem would not receive notice of the

fault; therefore, it would continue executing its copy of the critical sequence.

Repeated occurrence of this scenario would cause the online system to get

way ahead of the prime string, possibly to the point where the online string

Attachment A - DO NOT REDISTRIBUTE 3

would complete execution of its copy of the sequence. If the prime string

subsequently fails, the online string may not have a markpoint to roll back

to.

Details are as follows. The synchronization between prime and online

is based on the state of the prime string at the one second boundaries.

The STB handshake in RTI 5 will not report the occurrence of a fault that

occurred after the beginning of the one second time frame. However, if

the fault is repaired before the start of next one-second time frame, the

prime string will not report it in the STB at the next handshake either.

The result is that the online system is now one second ahead of the prime

string. Figure 1 shows one sequence of events in this scenario. Inspection

of the �gure shows that repeated injection of this type of intermitent fault

e�ectively stalls the prime execution while the online system will eventually

complete executing its copy of the critical sequence.

This anomaly is due entirely to the ordering of processing described

in the design note. It is possible that the anomaly is not present in the

implementation. If it does occur in the implementation, a simple �x can be

made by arranging the order of processing somewhat di�erently.

2.2 Anomaly Two

This anomaly depends upon how faults are handled at the end of a critical

sequence. If a fault occurs in the prime string within two seconds after

the end of the critical sequence is reached, it is not clear how the rollback if

any would be handled. Design Note 10 does not designate the 6END PROG

instruction as a mark point. Figure 2 shows this scenario. Our validation run

failed because our model assumed that once the critical sequence completed,

the prime system returned to the Power Up Idle state; accordingly there

would be no suspended critical sequence to return to once the fault was

corrected. If the fault were to bring the prime system down, the online

system may need to roll back to the last aged markpoint. Presumably then

a similar problem would develop here too.

This anomaly is due to a missing requirement. It is likely that the

problem does not occur in the implementation. If the problem does oc-

cur, a simple �x would be to always treat the END PROG instruction as a

markpoint, and to ensure the mark and rollback process continues until this

markpoint is fully aged.

Attachment A - DO NOT REDISTRIBUTE 4

Figure 1: GDRS Prime Fault Repaired in One Second

Attachment A - DO NOT REDISTRIBUTE 5

Figure 2: GDRS Fault Two or Three Seconds After Sequence Completion

Attachment A - DO NOT REDISTRIBUTE 6

Figure 3: GDRS Prime Fault Two Seconds After Mark Point

Attachment A - DO NOT REDISTRIBUTE 7

2.3 Anomaly 3

This anomaly concerns the occurrence of a fault 2 seconds after a mark point

is encountered in the prime string. The situation is shown in Figure 3. The

prime system freezes the aging function giving the aging bu�er snapshot

shown on the right of the �gure at n + 2 seconds. Since the STB handshake

uses the previous second's value for the ags, SFP = 0 is broadcast. The

online string continues to execute and ages its mark point by one further

second, giving the con�guration shown on the left in the �gure at n + 3

seconds. At this point the online system receives the SFP = 1 value and

now both agers are frozen. When the fault is subsequently repaired, the

prime system will roll back correctly, but the online system will roll to a

di�erent point as shown at second m on the left in the �gure. This would

not cause a problem if the prime system completes the critical sequence.

However, if the online system should subsequently have to take over due

to a prime failure - possibly associated with the [symptomatic] peripheral

interfering fault that was just processed, it could roll to an inappropriate

block of code.

Using a comparison of the internal and the external (broadcast) agers

in the online system would not seem to help since the broadcast ager is

deemed to be the more reliable source. Also, this problem would not go

away if the aging bu�ers were made deeper or shallower. It would just occur

at a di�erent place since it is a consequence of the relative time di�erence

between the two aging schemes.

3 summary and recommendations

The analysis technique used in this study is new, and was not su�ciently

mature just a few years ago to enable its use. The most thorny problems in

systems development occur where communication of vital information is a

key requirement. With respect to the mark and rollback process, the CDS

operates as a communication system [3]; and in this respect has all of the

complexity associated with the such systems. The use of model checkers

opens up new possibilities for validating such systems, as illustrated by a

statement made by Holzmann [2] in reference to a couple of relatively simple

communciation protocols:

It is almost impossible to manually verify correctness require-

ments such as the ones discussed, no matter how diligent or

Attachment A - DO NOT REDISTRIBUTE 8

disciplined the designer. The behavior of even simple protocol

systems can be of a complexity that no designer can be expected

to assess accurately.

The �ndings reported here are based upon an analysis of the preliminary

version of Design note 10 shared with us by the project; which is now two

years old. Hence, it is not known whether the anomalies we have described

have already been addressed in revisions of the design note, or in the im-

plementation itself. In either case, it should be fairly easy to determine

whether the implementation exhibits these anomalies through inspection

and/or testing.

Recommendation 1: Investigate whether the anomalies described in this

white paper occur in the implementation of the CDS mark and rollback

system. Test cases that exercise these anomalies can be derived from the

traces output by the model checker used in this study.

Recommendation 2: The analysis that revealed the anomalies in this area

needs to be completed. Firstly, the model can be updated to reect design

changes that have occurred since the preliminary version of Design note 10,

from which we have been working. The remaining error cases can then be

explored, as an additional validation of the mark and rollback design

Recommendation 3: The model developed in this work can be used to

test the coverage of the test suite used for CDS. A simple way of doing this

is to seed errors into the model, generate traces through the model that

then violate the requirements, and use these traces as test cases for the

implementation.

References

[1] A. Elson. Design note 10. Technical report, Jet Propulsion Laboratory,

California Institute of Technology, February 1996.

[2] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice

Hall, 1991.

[3] F. L. Schneider. Task2 criticalsequence analysis. JPL Internal Report,Jet

Propulsion Laboratory, Pasadena, California, 1997.

